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In the previous paper [Giacovazzo & Siliqi (2002). Acta Cryst. A58, 590±597], a

probabilistic approach for the SIR±MIR and the SIRAS±MIRAS cases has been

described. The mathematical technique is able to take into account the errors

arising from measurements, lack of isomorphism and heavy-atom model

substructure. An automatic procedure is here described in which the conclusive

formulas of that probabilistic approach have been implemented. The procedure

has been successfully applied to several test structures: it can automatically

provide, starting from the experimental data, high-quality electron-density

maps.

1. Symbols and abbreviations

For the general notation, the reader should consult the paper

by Giacovazzo & Siliqi (2002).

Other notations:

Zj: atomic number of the jth atom.

�3d;�3p;�3h �
P

fj�h1�fj�h2�fj�h3�, where the summation is

extended to derivative, native protein and heavy atoms,

respectively. As usual for direct-methods applications, we

will approximate the ratio ��3=2=�3� by ��3=2
2 =�3�, where

�n �
P

Zn
j .

�p � �p1 � �p2 � �p3: triplet invariant of the native protein.

The subscripts pi stand for phi, under the condition that

h1 � h2 � h3 � 0. A similar notation holds for the subscripts

di.

�iso � jFdjobs ÿ jFpjobs: isomorphous difference of the native

protein.

Di�x� � Ii�x�=I0�x�, Ii�x� is the modi®ed Bessel function of

order i.

The following papers are denoted as papers I±IX, respec-

tively: Giacovazzo et al. (1988); Giacovazzo et al. (1994);

Giacovazzo, Siliqi & Zanzotti (1995); Giacovazzo, Siliqi &

GonzaÂ lez-Platas (1995); Giacovazzo et al. (1996); Giacovazzo

& Siliqi (1997); Giacovazzo et al. (2001); Giacovazzo et al.

(2002); Giacovazzo & Siliqi (2002).

2. Introduction

The integration between isomorphous replacement tech-

niques and direct methods was initiated by Hauptman (1982).

The triplet phase invariant �p of the native protein was esti-

mated via the six moduli Rp1;Rp2;Rp3;Rd1;Rd2;Rd3. The

problem was revisited in paper I. The conclusive probabilistic

formula was of von Mises type:

P��p� � �2�I0�G��ÿ1 exp�G cos �p�; �1�

where

G � 2��3=�
3=2
2 �pRp1Rp2Rp3 � 2��3=�

3=2
2 �H�1�2�3: �2�

I0�x� is the modi®ed Bessel function of the order zero and

� � �jFdj ÿ jFpj�=��H�1=2 � �iso=��H�1=2

is the pseudo-normalized difference (with respect to the

heavy-atom structure).

The ®rst term in (2) is often negligible with respect to the

second, which may attain large values even for large proteins.

Papers II±VI were devoted to designing, implementing and

testing a practical direct procedure (from now on the O-

procedure) for the solution of protein structures, which may be

described in terms of six steps:

Step 1 ± Normalization step. Native data are put on an

absolute scale, then the derivative data are scaled on the

native data by exploiting some properties of the P(�) distri-

bution (see paper III).

Step 2. A certain number of re¯ections (usually from 800 to

1000; from now on denoted as set NLAR) with large values of

Rp and |�| are selected, and triplet invariants calculated

according to (1) and (2).

Step 3 ± The phasing step. A starting set of phases is

generated by a random process: to them a weighted tangent

formula is applied and various trials produced.

Step 4 ± Identi®cation of the correct solution. As described in

paper II, the classical ®gures of merit MABS, ALFCOMB and



PSICOMB have been modi®ed to exploit the information

contained in the experimental � values. In particular:

(i)

MABS �P
h

�h

� P
h

�h

� �
;

where

�h �
��P

j

Gj sin��pkj
� �phÿkj

�
�2

�
�P

j

Gj cos��pkj
� �phÿkj

�
�2�1=2

:

The Gj are ®xed by (2).

(ii) ALFCOMB, which depends on the ratios

��h ÿ h�hi�=��h;

where

�2
�h � 1

2

P
j

Gj�1�D2�Gj� ÿ 2D2
1�Gj��:

(iii) PSICOMB: it is calculated by quartering the re¯ections

with small values of Rp and |�|, and then by constructing the

PSI0 triplets. In particular, PSICOMB depends on the ratios

�0h=��0
h
, where

�0h �
��P

j

G0j sin��pkj
� �phÿkj

�
�2

�
�P

j

G0j cos��pkj
� �phÿkj

�
�2�1=2

;

G0j � 2��3=�
3=2
2 �H�kj

�hÿkj

��0
h
� P

j

G02j

 !1=2

:

A combined ®gure of merit (CFOM) integrates the indi-

cations arising from the component FOM's. The ef®ciency of

CFOM will be described in x5. It seems worthwhile stating that

our FOM's are not based on the Sayre equation but on the

supplementary information contained in the experimental �'s.

Their knowledge reduces the mathematical complexity of the

problem from the order ��3=�
3=2
2 �p to the order ��3=�

3=2
2 �H (i.e.

from the order of the size of the protein to the order of the size

of a small molecule).

A differential Fourier synthesis is also calculated, to discard

trials with high values of the combined ®gure of merit CFOM

but locating atoms on an allowed origin.

Step 5 ± Phase extension up to derivative resolution. For each

trial solution selected according to step 4, the phase extension

up to the derivative resolution is performed. Batches of about

200 re¯ections chosen in decreasing order of |�| are pro-

gressively phased via triplets constituted by one re¯ection

belonging to the set NLAR and two re¯ections belonging to

the actual batch.

Step 6. Phase extension up to native resolution via solvent

¯attening techniques (see paper VI).

The O-procedure presents advantages and disadvantages

with respect to traditional SIR±MIR techniques. The main

advantage is the following: while classical techniques require

an intermediate step (the location and the re®nement of the

heavy atoms), the O-procedure may automatically provide

protein phases directly from the diffraction data, without the

prior knowledge of the heavy-atom structure. However, this

structure may be easily determined by the O-procedure, via an

a posteriori differential Fourier synthesis and a subsequent

automatic re®nement. The question then arises whether it was

possible to improve the ef®ciency of the triplet invariants by

introducing, into the joint probability distribution

P�Ep1;Ep2;Ep3;Ed1;Ed2;Ed3�;
the supplementary information on the heavy-atom structure.

The suggestion (Klop et al., 1987; Fortier et al., 1985) of

introducing the so-called `doublet invariants' proved not

fruitful (see paper VI). The problem has been solved in paper

IX, where the joint probability distribution

P�Ep1;Ep2;Ep3;Ed1;Ed2;Ed3jEH1;EH2;EH3�
was derived. The resulting conditional distribution

P��pjfRpi;Rdi;EHi; i � 1; 2; 3g� �3�
is again of von Mises type, but this time its concentration

parameter does not contain any term of order ��3=�
3=2
2 �H . The

application of (3) to practical cases did not lead to phases

better than those obtained via the O-procedure or via the

classical SIR techniques.

There are three main disadvantages of the O-procedure:

(a) A prior estimate of ��3=�
3=2
2 �H (and therefore of the

number and of the occupancy factors of the heavy atoms) is
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Figure 1
Flow chart of the phasing procedure for the SIR±MIR case.
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necessary to obtain the �'s from the �iso's. The accuracy of

the estimate is not critical and the procedure works well in

many cases, but large errors can lower the quality of the

protein phases obtained at the end of the process. In these

cases, a well re®ned heavy-atom structure can make classical

SIR±MIR techniques more ef®cient than the O-procedure.

(b) It is unable to treat errors [e.g. equations (1) and (2)

were derived by assuming that there is no error in measure-

ments and that no lack of isomorphism occurs].

(c) No probabilistic approach was devised to use the triplet

invariants for treating the MIR (as well as the SIRAS and the

MIRAS) case.

The present paper describes a new procedure (from now on

the N-procedure) which preserves the advantage of the full

automatism and is not affected by any of the disadvantages

(a)±(c). Applications to several practical cases show that the

procedure is robust, constitutes a useful tool for macro-

molecular crystallographers, and is a valuable alternative to

different approaches aiming at automated protein phasing

(Konnert et al., 1999; Liu et al., 1999; Terwilliger, 1994;

Terwilliger & Berendzen, 1996; Vekhter & Miller, 2001;

Woolfson et al., 1997).

3. The N-procedure

The N-procedure for SIR±MIR cases may be described as

follows (see the ¯ow chart in Fig. 1):

Step 1 ± Normalization of the native and pseudonormali-

zation of all the derivatives (i.e. the structure-factor moduli of

the derivatives are put on the scale of the native and

normalized with respect to it via a Wilson plot). Owing to the

ignorance of the scattering power of the heavy-atom

substructure, the pseudonormalization is a necessary substi-

tute for the normalization.

Step 2 ± A statistical test is performed to estimate the

scattering power of each heavy-atom substructure. This

information is necessary for the use of relation (2). The

probabilistic approach and the results of its application to

some test structures (see Table 1) are described in x4.

Step 3 ± The native and the corresponding derivative

structure-factor moduli are settled on the absolute scale (on

the basis of the information gained at Step 2).

Step 4 ± For the current derivative, Step 3 of the O-proce-

dure is performed.

Step 5 ± For the current derivative, Step 4 of the O-proce-

dure is executed.

Step 6 ± For the current derivative, the heavy-atom structure

is found and re®ned by least squares. Then the structure

factors FH are calculated for all the re¯ections up to the

derivative resolution, and the phases 'p are re-assigned

according to equations (20) and (21) of paper IX. This phasing

extension process is more ef®cient than that described at

Step 5 of the O-procedure (i.e. via the tangent formula): the

computing time and the penalty to pay in terms of phase error

are slightly smaller.

Step 7 ± The `best' derivative is selected: this is the one for

which the phasing procedure described at Step 3 of the

O-procedure is expected to provide the minimum phase error.

Steps 8 and following of the N-procedure will make clear that

a wrong selection would make the crystal structure solution

more time consuming. The probabilistic approach used and

the results of its applications to our test structures are

described in x5.

Step 8 ± In the case of MIR, a differential Fourier synthesis

�iso exp(i'p) is calculated for the other derivatives, and the

corresponding heavy-atom substructures are found and

re®ned as at Step 6. The phase values of the protein re¯ections

are then assigned according to equations (37)±(39) of paper

IX. The process is repeated until all the available derivatives

are considered.

Steps 6±8 are repeated three times. The rationale is the

following: the better phase information obtained after the

Table 1
Crystallochemical and diffraction data of the test structures.

NASYM is the number of non-H atoms in the asymmetric unit, RES is the resolution limit of the data (of the native and of each derivative respectively), NREFL is
the corresponding value of the measured re¯ections. The subscripts 1 and 2 to the Pt derivatives of NOX emphasize that the two derivatives were prepared under
different conditions.

Native Derivative

Structure code Space group NASYM RES (AÊ ) NREFL Heavy atoms RES (AÊ ) NREFL

APPa C2 302 0.99 17058 Hg 2.00 2108
BPOb P213 4529 2.35 23956 Au 2.80 15741

Pt 2.76 7433
DUTPASEc R3 1028 1.90 13638 Hg 2.00 11704

Pt 2.10 9862
E2d F432 1853 2.65 10388 Hg 3.00 9179
GLPEe P32 931 1.06 44798 Ho 2.00 6506
M-FABP f P212121 1101 2.14 7595 Hg 2.18 7125

Pt 2.15 6586
NOXg P41212 1689 2.26 9400 Pt1 2.26 9068

Hg 2.59 5425
Au 2.38 7299
Pt2 2.37 6752

References: (a) Glover et al. (1983); (b) Hecht et al. (1994); (c) Cedergren-Zeppezauer et al. (1992); (d) Mattevi et al. (1992); (e) Spallarossa et al. (2001); ( f ) Zanotti et al. (1992);
(g) Hecht et al. (1995).



application of the equation (39) is used to improve the esti-

mates of the heavy-atom substructure parameters and conse-

quently the accuracy of the phase estimates.

Step 9 ± The solvent ¯attening procedure FLEX (see paper

VI) is applied to improve and to extend the phase information

up to native resolution.

Step 10 ± The quality of the ®nal map is submitted to the

user. If the quality of the map is not satisfactory, the next trial

with the highest value of PON (see x5) is selected, and the

procedure is started again at Step 6.

An optimized procedure for the SIRAS±MIRAS cases

should substantially differ from the N-procedure described

above. For example:

(a) The protein triplet invariants should be estimated via a

formula able to simultaneously exploit isomorphous as well

as anomalous differences, instead of via (2). This requires the

availability of the joint probability distribution function

P�Ep1;Ep2;Ep3;E�d1;Eÿd1;E�d2;Eÿd2;E�d3;Eÿd3�

and the ability of treating errors arising from measurements

and from lack of isomorphism. The formula estimating triplet

invariants in the SIRAS±MIRAS cases is still not available.

(b) The heavy-atom structure re®nement should be

performed via a least-squares process based on the observ-

ables jFpj, jF�d j, jFÿd j, and on the model structure factors F�H,

FÿH , rather than on the simpli®ed techniques used at Step 6 of

the N-procedure.

In our package, we have implemented a simpli®ed phasing

procedure that strictly follows the N-procedure but for a few

modi®cations. In particular: (a) the values jF�d j and jFÿd j are

averaged to Fd � �jF�d j � jFÿd j�=2 to simulate the absence of

anomalous-dispersion effects. Thus, Steps 1±6 of the N-

procedure are used without further modi®cations. (b) Step 7 is

modi®ed as follows: as soon as the heavy-atom substructure

has been re®ned, the phases �p are assigned according to

equations (46) and (47) of paper IX.

4. Finding the scattering power of the heavy-atom
substructure

Hauptman (1982) derived the joint probability distribution

function

P�Rp;Rd; �p; �d�; �4�
where Rp � jEpj=�1=2

p , Rd � jEdj=�1=2
d . From (4), the marginal

distribution

P�I; J� � �1ÿ �2�ÿ1=2 exp ÿ I � J

1ÿ �2

� �
I0

2�2

1ÿ �2
�IJ�1=2

� �
�5�

was derived, where I0 is the modi®ed Bessel function of order

zero, and I � R2
p, J � R2

d, � � ��p=�d�1=2.

The change of variable � � J ÿ I transforms P�I; J� into a

suitable density P�I;��. The integration over I through the

relation R�1
0

dx exp�ÿqx�I0�p�x2 � 2
x�1=2�

� �q2 � p2�ÿ1=2 expf
�qÿ �q2 � p2�1=2�g �6�
under the condition q> 0 leads to the density (Parthasarathy

& Srinivasan, 1964)

P�j�j� � cÿ1 exp�ÿj�j=c�; �7�
where c � 1ÿ �2 � �H=�d.

The distribution (7) is not useful for deriving the scattering

power of the heavy-atom structure. Indeed, Rp and Rd are

structure-factor moduli normalized with respect to the protein

and to the derivative, respectively, and this implies that �d is a

priori known.

We can however rewrite J as

J � jFdj2=�d � jF 0dj2��d=�p�=�d � jF 0dj2=�p; �8�
where jF 0dj2 is the value obtained after having rescaled jFdj2 on

the protein scale.

Since the values jF 0dj2 are available from the experiment (i.e.

it is supposed that the protein data have been put on the

absolute scale via a Wilson plot), the distribution

P�j�0j� � cÿ1 exp�ÿj�0j=c� �9�
with �0 � J0 ÿ I may be ®tted with the correponding experi-

mental histogram to derive c � ��H=�d�1=2, from which

�H=�p � �cÿ2 ÿ 1�ÿ1 may be obtained. Since �p is usually a
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Figure 2
BPO: the experimental j�0j distribution (spots) and the relative best
®tting curves (9) for the (a) Pt and (b) Au derivatives.
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priori known, the estimate of the �H value to introduce into

(2) is now available.

The above result is obtained under the hypothesis of the

perfect isomorphism. To treat imperfect isomorphism, we can

introduce the relation

Fd � Fp � FH � �;
where � is a complex number. Under the hypothesis that � is

uncorrelated with Fp and FH , we obtain

hjFdj2i � hjFpj2i � hjFHj2i � hj�j2i
or, also,

�d � �p ��H � hj�j2i;
from which

�d ÿ�p

�p

� �H � hj�j2i
�p

:

It may be argued that suitable statistics over j�0j will provide

an estimate of ��H � hj�j2i�=�p rather than of �H=�p.

For two of the test structures quoted in Table 1, we show in

Figs. 2 and 3 the experimental distributions of the j�0j values

(spots) and the relative best ®tting curves (9): such curves

closely represent the experimental distributions. A compari-

son between the estimated ��H � hj�j2i�=�p and the values of

�H=�p re®ned at Step 7 of the N-procedure via least squares

[according to Dickerson et al. (1961)] are shown in Table 2.

The comparison indicates a realistic agreement between the

statistical estimates and the re®ned values [i.e. always

��H � hj�j2i�=�p >�H=�p]. The dash for the second Pt

derivative of NOX indicates that no heavy-atom structure

model could be obtained via least-squares re®nement (i.e. any

model is unstable under re®nement).

5. Selecting the best trial solutions and the `best'
derivatives

The automatism of the entire procedure may be secured only

if suf®ciently `good' solutions are identi®ed among the various

trials produced by direct methods and if a suf®ciently good

derivative is selected as a pivot of the phase assignment. To

check the high ef®ciency of the ®gures of merit described in x2,

we show in Table 3, for each test structure and for each

derivative, the ®ve top ranked (by CFOM) trials and the

average phase error h|��|i (calculated with respect to the

published structure).

Derivatives potentially suitable for our direct phasing

process should satisfy the following two conditions: (a) the

ratio �H=�p should (at any resolution value) be high enough

to provide j�0j differences larger than the measurement

errors; (b) the lack of isomorphism should not provide a

dominant contribution to the experimental j�0j values. If both

the above conditions are satis®ed, a small average phase error

(say h|��|i) is expected when direct procedures are applied.

Unfortunately, the statistical results of x4 suggest that the

study of the distribution (9) is intrinsically unable to differ-

entiate between `good' and `bad' derivatives, because (9) does

provide information on the ratio ��H � hj�j2i�=�p but does

not discriminate between �H=�p and hj�j2i=�p. Hauptman

(1982) suggested the use of the correlation coef®cient of the

pair �I; J�, say

CORR � h�I ÿ I��J ÿ J�iH
�h�I ÿ I�2iHh�J ÿ J�2iH �1=2

; �10�

as a tool for discovering the lack of isomorphism. If the

isomorphism is imperfect, CORR is expected to be a mono-

Figure 3
M-FABP: the experimental j�0j distribution (spots) and the relative best
®tting curves (9) for the (a) Pt and (b) Hg derivatives.

Table 2
For each test structure and each derivative, the values of
��H � hj�j2i�=�p are listed and compared with the re®ned values of
�H=�p.

Structure code Heavy atoms �H=�p (�H + h|�|2i)=�p

APP Hg 0.077 0.081
BPO Au 0.028 0.113

Pt 0.016 0.060
DUTPASE Hg 0.042 0.067

Pt 0.038 0.051
E2 Hg 0.021 0.135
GLPE Ho 0.072 0.136
MFABP Hg 0.042 0.057

Pt 0.016 0.035
NOX Pt1 0.029 0.032

Hg 0.085 0.224
Au 0.067 0.183
Pt2 ± 0.028



tonically decreasing function of sin �=�. Equation (10) proved

unuseful in practice. As an example, in Fig. 4 we depict CORR

versus sin �=� for the NOX derivatives. The trend is quite

similar for Pt1 and Pt2: since CORR is nearly constant at the

various sin �=� values, both the derivatives should be consid-

ered as the best ones. On the contrary, when we apply the

direct phasing procedure to the NLAR re¯ections, the

minimum average phase errors are the following:

for Pt1, h|��|imin = 53�, found at trial 1 (the order is de®ned by

CFOM);

for Hg, h|��|imin = 56�, found at trial 1 (the order is de®ned by

CFOM);

for Au, h|��|imin = 59�, found at trial 5 (the order is de®ned by

CFOM);

for Pt2, h|��|imin = 78�, found at trial 4 (the order is de®ned by

CFOM).

Since both (9) and (10) are unsuitable for selecting the best

derivatives, we have used a different approach. Our procedure

cannot exploit the quality of the Patterson map, but it is able

to directly phase the protein re¯ections. Therefore it can use

®gures of merit like the phasing power and/or the Cullis R

factor to rank the `goodness' of the derivatives. We use the

®gure

PON � �PO=CUL� � NR;

where PO and CUL are the classical phasing power and Cullis

R factor, respectively, de®ned by

PO �P
n

jFHj2
.P

n

LOC2; CUL �P
n

LOC
.P

n

j�isoj

with LOC � jjFdjobs ÿ jFdjcalcj, n is the number of observed

scattering amplitudes and jFdjcalc � jFp � FHj. Furthermore,

NR � n=nmax, where nmax is the maximum number of

observed amplitudes among the various derivatives. Higher

values of PON denote better derivatives.

The best derivative is assumed to be the one for which the

trial solution with the largest value of PON is obtained

(accordingly, the corresponding heavy-atom substructure is

considered the most reliable one). In Table 4, we analyse the

MIR cases included in the set of our best structures. For each

derivative, we show:

(a) the best PON value (say PONbest) found among the ten

trial solutions with the highest values of CFOM;

(b) the order of the trial (ORDTR) providing PONbest;

(c) the value h|��|i (say h|��|iHR) corresponding to such a

trial.

Table 4 con®rms that the ®gure of merit CFOM is highly

ef®cient (see the small values of ORDTR); and suggests a high

correlation exists between PON and h|��|iDM. Accordingly,

the default choice of PROFLEX is a reasonable one (Au

derivative for BPO, Hg derivative for DUTPASE, Hg deriv-

ative for M-FABP, Pt1 derivative for NOX).

6. Experimental applications

We have implemented the N-procedure in the program

PROFLEX, a package dedicated to the crystal structure

solution of proteins when SIR±MIR or SIRAS±MIRAS cases

occur. The goal of this section is to demonstrate that

PROFLEX is able to automatically derive, from the experi-

mental data and without any user intervention, good quality

(i.e. perfectly interpretable) electron-density maps. The user is

only required to de®ne the atomic species of the heavy atoms:
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Table 3
For each test structure and for each derivative, we show the values of
CFOM and the mean phase error for the `best' (ranked in order of
CFOM) ®ve trial solutions (as found among 50 trials).

The good solutions are shown in bold.

Structure code CFOM (h|���|i)
APP

Hg 0.64 (34) 0.56 (82) 0.35 (84) 0.35 (83) 0.35 (84)
BPO

Au 0.79 (32) 0.79 (32) 0.79 (32) 0.61 (88) 0.60 (88)
Pt 0.42 (85) 0.42 (85) 0.42 (86) 0.42 (87) 0.42 (88)

DUTPASE
Hg 0.59 (34) 0.50 (49) 0.33 (64) 0.32 (64) 0.28 (66)
Pt 0.42 (60) 0.21 (52) 0.16 (71) 0.15 (73) 0.15 (73)

E2
Hg 0.79 (29) 0.79 (29) 0.79 (29) 0.70 (89) 0.52 (92)

GLPE
Ho 0.48 (37) 0.31 (81) 0.31 (73) 0.31 (80) 0.30 (77)

MFABP
Hg 0.46 (40) 0.46 (40) 0.46 (40) 0.37 (65) 0.34 (67)
Pt 0.25 (56) 0.24 (54) 0.24 (54) 0.19 (81) 0.18 (86)

NOX
Pt1 0.38 (53) 0.38 (53) 0.37 (56) 0.37 (56) 0.35 (79)
Hg 0.49 (56) 0.48 (56) 0.44 (86) 0.44 (86) 0.43 (87)
Au 0.40 (68) 0.39 (68) 0.39 (68) 0.39 (68) 0.39 (59)
Pt2 0.51 (86) 0.49 (88) 0.49 (86) 0.49 (79) 0.49 (84)

Figure 4
CORR versus resolution (AÊ ÿ1) for NOX.

Table 4
Selection of the best derivative for the MIR cases included in the set of
our test structures.

Structure code
Heavy
atoms CUL PO PONbest ORDTR h|���|iHR

BPO Au 0.71 1.70 1.22 1 62
Pt 1.12 1.44 0.61 1 76

DUTPASE Hg 0.77 1.72 2.23 1 69
Pt 0.89 1.45 1.37 1 76

MFABP Hg 0.95 1.46 1.54 1 69
Pt 0.91 1.33 1.35 1 78

NOX Pt1 1.01 1.35 1.34 1 79
Hg 0.93 1.47 0.94 1 76
Au 0.93 1.38 1.19 5 89
Pt2 1.04 1.26 0.90 4 86
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the number of symmetry-independent heavy atoms as well as

their re®ned structural parameters are progressively estab-

lished by PROFLEX.

The results of our applications (in default mode) are shown

in Table 5. For each test structure, the following information is

given:

(a) NRDM and h|��|iDM are the number of re¯ections

phased by direct methods and the corresponding average

phase error (in degrees), respectively. Both the ®gures refer to

the derivative automatically selected as the `best'.

(b) NRHR and h|��|iHR are the number of re¯ections

phased by the N-procedure at the end of the heavy-atom

structure re®nement (Step 8 of the N-procedure) and the

corresponding average phase error, respectively (the weighted

phase error in parentheses). CCHR is the correlation factor

CCHR � h��modi ÿ h�ih�modi
��h�2i ÿ h�i2��h�2

modi ÿ h�modi2��1=2

computed between the electron-density map calculated at the

end of Step 8 and the electron density corresponding to the

published (i.e. re®ned) protein structure (at protein data

resolution).

(c) NRFL and h|��|iFL are the number of re¯ections

phased by the last run of FLEX (Step 9 of the N-procedure)

and the corresponding phase error, respectively (the weighted

phase error in parentheses). CCFL is the correlation factor

between the corresponding electron-density map and the map

calculated at protein data resolution with published (i.e.

re®ned) phases.

(d) The CPU time (on a DELL Precision 500, Pentium IV

1.7 GHZ) necessary for PROFLEX to provide the ®nal elec-

tron-density map.

The results show the progressive gain of phase information

along the various stages of the N-procedure and demonstrate

the ef®ciency of PROFLEX and its ability to perform the

entire phasing process in complete automatism. The proce-

dure will soon be made available in a public computer

program, combined with other routines able to automatically

phase proteins via SAD±MAD data.
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Table 5
Progress in the phase estimation at various steps of PROFLEX.

Direct methods SIR/MIR FLEX

Structure code NRDM h|���|iDM NRHR h|���|iHR CCHR NRFL h|���|iFL CCFL CPU (min)

APP 497 34 1739 58 (52) 0.46 17058 54 (48) 0.78 9
BPO 837 32 12211 53 (49) 0.46 23956 49 (43) 0.77 49
DUTPASE 960 37 11707 68 (60) 0.48 13638 49 (45) 0.80 27
E2 819 29 6305 55 (50) 0.49 10395 42 (38) 0.87 79
GLPE 960 37 5380 58 (54) 0.42 44798 62 (56) 0.73 74
MFABP 919 40 5228 61 (55) 0.45 7595 46 (38) 0.74 6
NOX 858 53 9303 69 (62) 0.44 9400 54 (45) 0.74 58


